Bandgaps of long-period polytypes of IV, IV-IV, and III-V semiconductors estimated with an Ising-type additivity model

Author:

Ramakrishnan Raghunathan1ORCID,Jain Shruti23ORCID

Affiliation:

1. Tata Institute of Fundamental Research Hyderabad 1 , Hyderabad 500046, India

2. Indian Institute of Science Education and Research Mohali 2 , Mohali 140306, Punjab, India

3. VSRP Fellow at Tata Institute of Fundamental Research Hyderabad 3 , Hyderabad 500046, India

Abstract

We apply an Ising-type model to estimate the bandgaps of the polytypes of group IV elements (C, Si, and Ge) and binary compounds of groups: IV–IV (SiC, GeC, and GeSi), and III–V (nitride, phosphide, and arsenide of B, Al, and Ga). The models use reference bandgaps of the simplest polytypes comprising 2–6 bilayers calculated with the hybrid density functional approximation, HSE06. We report four models capable of estimating bandgaps of nine polytypes containing 7 and 8 bilayers with an average error of ≲0.05 eV. We apply the best model with an error of <0.04 eV to predict the bandgaps of 497 polytypes with up to 15 bilayers in the unit cell, providing a comprehensive view of the variation in the electronic structure with the degree of hexagonality of the crystal structure. Within our enumeration, we identify four rhombohedral polytypes of SiC—9R, 12R, 15R(1), and 15R(2)—and perform detailed stability and band structure analysis. Of these, 15R(1) that has not been experimentally characterized has the widest bandgap (>3.4 eV); phonon analysis and cohesive energy reveal 15R(1)-SiC to be metastable. Additionally, we model the energies of valence and conduction bands of the rhombohedral SiC phases at the high-symmetry points of the Brillouin zone and predict band structure characteristics around the Fermi level. The models presented in this study may aid in identifying polytypic phases suitable for various applications, such as the design of wide-gap materials, that are relevant to high-voltage applications. In particular, the method holds promise for forecasting electronic properties of long-period and ultra-long-period polytypes for which accurate first-principles modeling is computationally challenging.

Funder

Tata Institute of Fundamental Research

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3