A novel coating to avoid corrosion effect between eutectic gallium–indium alloy and heat sink metal for X-ray optics cooling

Author:

Tang Shanzhi12ORCID,He Tian12,Yu Haihan12,Ou Zina1,Ren Zhongrui1,Li Ming1,Sheng Weifan1

Affiliation:

1. Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing 100049, People’s Republic of China

2. University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

Abstract

Owing to the parasitic vibration effect of the cooling medium and pipes of X-ray optics, the vibration decoupling cooling method based on eutectic gallium–indium (EGaIn) alloy has become very crucial for fourth generation synchrotron radiation advanced light sources. However, there is an issue that the corrosion of the EGaIn alloy to the heat sink metal [e.g., copper (Cu) plate] results in the solidification and the failure of eliminating the parasitic vibration effect. To deal with the problem, a novel anti-corrosion coating based on tungsten (W) is presented in this paper. It possesses better corrosion resistance performance compared with the traditional coating of nickel (Ni). The experimental investigation was carried out, in which the EGaIn alloy was exposed to several typical metal materials in conditions of various time durations and various temperatures, which were considered as controls. Furthermore, the corrosion effects are analyzed and evaluated in two aspects of micromorphology and the chemical composition by using an optical microscope and a scanning electron microscope as well as x-ray diffraction. The results show that non obvious corrosion occurred for W, 0.33 mm and 48 µm thick transition micro-area, respectively, for Cu and Ni. In addition, new substances CuGa2 and Ni3Ga7 occurred, respectively, for Cu and Ni for 36 hours at 250 °C. The EGaIn alloy will freeze after corroding 18 µm substrate for Ni or 30 µm for Cu. Furthermore, the W coating that was prepared by magnetron sputtering has been implemented for feasibility validation.

Funder

Institute of High Energy Physics

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3