The prognostic effect of mechanical, ultrastructural, and ECM signatures in glioblastoma core and rim

Author:

Mahaffey Bradley J.1,Fowler Zachary P.1,Lung Zoe1,Dang Vivien2,Lee Hyunchul2ORCID,Johnson Allison McKenzie1,Munoz Marco A.1ORCID,Goodin Dylan A.1,Frieboes Hermann B.1345,Williams Brian J.24ORCID,Chen Joseph134ORCID

Affiliation:

1. Department of Bioengineering, University of Louisville 1 , Louisville, Kentucky 40292, USA

2. Department of Neurosurgery, University of Louisville 2 , Louisville, Kentucky 40202, USA

3. Department of Pharmacology and Toxicology, University of Louisville 3 , Louisville, Kentucky 40202, USA

4. UofL Health—Brown Cancer Center, University of Louisville 4 , Louisville, Kentucky 40202, USA

5. Center for Predictive Medicine, University of Louisville 5 , Louisville, Kentucky 40222, USA

Abstract

Glioblastoma (GBM) is a highly invasive, aggressive brain cancer that carries a median survival of 15 months and is resistant to standard therapeutics. Recent studies have demonstrated that intratumoral heterogeneity plays a critical role in promoting resistance by mediating tumor adaptation through microenvironmental cues. GBM can be separated into two distinct regions—a core and a rim, which are thought to drive specific aspects of tumor evolution. These differences in tumor progression are regulated by the diverse biomolecular and biophysical signals in these regions, but the acellular biophysical characteristics remain poorly described. This study investigates the mechanical and ultrastructural characteristics of the tumor extracellular matrix (ECM) in patient-matched GBM core and rim tissues. Seven patient-matched tumor core and rim samples and one non-neoplastic control were analyzed using atomic force microscopy, scanning electron microscopy, and immunofluorescence imaging to quantify mechanical, ultrastructural, and ECM composition changes. The results reveal significant differences in biophysical parameters between GBM core, rim, and non-neoplastic tissues. The GBM core is stiffer, denser, and is rich in ECM proteins hyaluronic acid and tenascin-C when compared to tumor rim and non-neoplastic tissues. These alterations are intimately related and have prognostic effect with stiff, dense tissue correlating with longer progression-free survival. These findings reveal new insights into the spatial heterogeneity of biophysical parameters in the GBM tumor microenvironment and identify a set of characteristics that may correlate with patient prognosis. In the long term, these characteristics may aid in the development of strategies to combat therapeutic resistance.

Funder

National Institute of General Medical Sciences

Kentucky IDeA Networks of Biomedical Research Excellence

National Cancer Institute

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3