Development of accurate potentials for the physisorption of water on graphene

Author:

Vekeman Jelle1ORCID,García Cuesta Inmaculada2ORCID,Faginas-Lago Noelia3ORCID,Sánchez-Marín José4ORCID,Sánchez de Merás Alfredo M. J.2ORCID

Affiliation:

1. Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, 9052 Zwijnaarde, Belgium

2. Departamento de Química Física, Universidad de Valencia, Avda. Dr. Moliner 50, E-46100 Burjassot, Spain

3. Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Via Elce di Sotto 8, I-06123 Perugia, Italy

4. Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático José Beltrán 2, E-46980 Paterna, Spain

Abstract

From coupled-cluster singles and doubles model including connected triples corrections [CCSD(T)] calculations on the water dimer and B97D/CC on the water-circumcoronene complex at a large number of randomly generated conformations, interaction potentials for the physisorption of water on graphene are built, accomplishing almost sub-chemical accuracy. The force fields were constructed by decomposing the interaction into electrostatic and van der Waals contributions, the latter represented through improved Lennard-Jones potentials. Besides, a Chemistry at Harvard Macromolecular Mechanics (CHARMM)-like term was included in the water–water potential to improve the description of hydrogen bonds, and an induction term was added to model the polarization effects in the interaction between water and polyaromatic hydrocarbons (PAHs) or graphene. Two schemes with three and six point charges were considered for the interactions water–water and water-PAH, as Coulomb contributions are zero in the water-graphene system. The proposed fitted potentials reproduce the ab initio data used to build them in the whole range of distances and conformations and provide results for selected points very close to CCSD(T) benchmarks. When applied to the water-graphene system, the obtained results are in excellent agreement with p-CCSD(T), revised symmetry-adapted perturbation theory based on density functional theory monomer properties (DFT-SAPT), and diffusion Monte Carlo reference values. Furthermore, the stability of the various conformers water-PAH and water-graphene, as well as the different trends observed between these systems are rationalized in terms of the modifications of the electrostatic contribution.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Research Foundation Flanders

Flemish Supercomputer Center

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3