Self-consistent calculations of the electric charge, ion drag force, and the drift velocity of spherical grains using Langevin dynamics and comparisons against canonical experiments

Author:

Madugula Venkata1ORCID,Suresh Vikram1ORCID,Liu Zhibo1ORCID,Ballard Davis1ORCID,Wymore Logan2ORCID,Gopalakrishnan Ranganathan1ORCID

Affiliation:

1. Department of Mechanical Engineering, The University of Memphis 1 , Memphis, Tennessee 38152, USA

2. Arlington High School 2 , Arlington, Tennessee 38002, USA

Abstract

We present trajectory simulation-based modeling to capture the interactions between ions and charged grains in dusty or complex plasmas. Our study is motivated by the need for a self-consistent and experimentally validated approach for accurately calculating the ion drag force and grain charge that determine grain collective behavior in plasmas. We implement Langevin dynamics in a computationally efficient predictor–corrector approach to capture multiscale ion and grain dynamics. Predictions of grain velocity, grain charge, and ion drag force are compared with prior measurements to assess our approach. The comparisons reveal excellent agreement to within ±20% between predicted and measured grain velocities [Yaroshenko et al., Phys. Plasmas 12, 093503 (2005) and Khrapak et al., Europhys. Lett. 97, 35001 (2012)] for 0.64, 1.25 μm grains at ∼20−500 Pa. Comparisons with the measured grain charge [Khrapak et al., Phys. Rev. E 72, 016406 (2005)] under similar conditions reveal agreement to within ∼20% as well. Measurements of the ion drag force [Hirt et al., Phys. Plasmas 11, 5690 (2004); IEEE Trans. Plasma Sci. 32, 582 (2004)] are used to assess the viability of the presented approach to calculate the ion drag force experienced by grains exposed to ion beams of well-defined energy. Excellent agreement between calculations and measurements is obtained for beam energies >10 eV, and the overprediction below 10 eV is attributed to the neglect of charge exchange collisions in our modeling. Along with critical assessments of our approach, suggestions for future experimental design to probe charging of and momentum transfer onto grains that capture the effect of space charge concentration and external fields are outlined.

Funder

Directorate for Mathematical and Physical Sciences

U.S. Department of Energy

Army Research Office

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3