Design and characterization of a cryogenic linear Paul ion trap for ion–neutral reaction studies

Author:

Miossec Chloé12,Hejduk Michal23ORCID,Pandey Rahul1,Coughlan Neville J. A.24,Heazlewood Brianna R.1ORCID

Affiliation:

1. Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE, United Kingdom

2. Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom

3. Faculty of Mathematics and Physics, Charles University, KFPP, V Holešovičkách 2, Praha 8, Czech Republic

4. WaterMine Innovation, Inc., Waterloo, Ontario N0B 2T0, Canada

Abstract

Ultra-high vacuum conditions are ideal for the study of trapped ions. They offer an almost perturbation-free environment, where ions confined in traps can be studied for extended periods of time—facilitating precision measurements and allowing infrequent events to be observed. However, if one wishes to study processes involving molecular ions, it is important to consider the effect of blackbody radiation (BBR). The vast majority of molecular ions interact with BBR. At 300 K, state selection in trapped molecular ions can be rapidly lost (in a matter of seconds). To address this issue, and to maintain state selectivity in trapped molecular ions, a cryogenic ion trap chamber has been constructed and characterized. At the center of the apparatus is a linear Paul ion trap, where Coulomb crystals can be formed for ion–neutral reaction studies. Optical access is provided, for lasers and for imaging of the crystals, alongside ion optics and a flight tube for recording time-of-flight mass spectra. The ion trap region, encased within two nested temperature stages, reaches temperatures below 9 K. To avoid vibrations from the cryocooler impeding laser cooling or imaging of the ions, vibration-damping elements are explicitly included. These components successfully inhibit the coupling of vibrations from the cold head to the ion trap—confirmed by accelerometer measurements and by the resolution of images recorded at the trap center (at 9 and 295 K). These results confirm that the cryogenic ion trap apparatus meets all requirements for studying ion–neutral reactions under cold, controlled conditions.

Funder

Engineering and Physical Sciences Research Council

European Commission

The Community for Analytical and Measurement Science Community for Analytical and Measurement Science

Primus Research Program

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cold and ultracold molecules in the twenties;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-06

2. Cold CAS ion trap – 22 pole trap with ring electrodes for astrochemistry;Molecular Physics;2023-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3