Marangoni instability in oblate droplets suspended on a circular frame

Author:

Shishkin M. A.12ORCID,Kolegov K. S.3ORCID,Pikin S. A.4ORCID,Ostrovskii B. I.4ORCID,Pikina E. S.125ORCID

Affiliation:

1. Landau Institute for Theoretical Physics of the RAS 1 , Moscow Region, Chernogolovka 142432, Russia

2. HSE University 2 , Moscow 101000, Russia

3. Astrakhan State University named after V.N. Tatishchev 3 , Astrakhan 414056, Russia

4. FSRC “Crystallography and Photonics” of the RAS 4 , Moscow 119333, Russia

5. Oil and Gas Research Institute of the RAS 5 , Moscow 119333, Russia

Abstract

We study theoretically internal flows in a small oblate droplet suspended on the circular frame. Marangoni convection arises due to a vertical temperature gradient across the drop and is driven by the surface tension variations at the free drop interface. Using the analytical basis for the solutions of Stokes equation in coordinates of oblate spheroid, we have derived the linearly independent stationary solutions for Marangoni convection in terms of Stokes stream functions. The numerical simulations of the thermocapillary motion in the drops are used to study the onset of the stationary regime. Both analytical and numerical calculations predict the axially symmetric circulatory convection motion in the drop, the dynamics of which is determined by the magnitude of the temperature gradient across the drop. The analytical solutions for the critical temperature distribution and velocity fields are obtained for the large temperature gradients across the oblate drop. These solutions reveal the lateral separation of the critical and stationary motions within the drops. The critical vortices are localized near the central part of a drop, while the intensive stationary flow is located closer to its butt end. A crossover to the limit of the plane film is studied within the formalism of the stream functions by reducing the droplet ellipticity ratio to zero value. The initial stationary regime for the strongly oblate drops becomes unstable relative to the many-vortex perturbations in analogy with the plane fluid films with free boundaries.

Funder

Russian Science Foundation

State assignments of FSRC "Crystallography and Photonics"

State assignment of Landau Institute for Theoretical Physics of RAS

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3