Affiliation:
1. Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei Key Laboratory of Photo-Electricity Information and Materials, Hebei University 1 , Baoding 071002, China
2. Department of Materials Science and Engineering, National University of Singapore 2 , Singapore 117576, Singapore
Abstract
Since J. Valasek first discovered ferroelectric materials in 1920, researchers have been exploring continuously in various fields through theory and experiments. With the rapid development of the computing technology, energy efficiency and size requirements of semiconductor devices are becoming increasingly demanding. However, the conventional ferroelectric materials, which have been limited by physical size restrictions, can no longer satisfy the above requirements. Two-dimensional (2D) ferroelectric materials can effectively overcome the size limitation of traditional ferroelectrics due to the weak van der Waals force between layers, which is easy to thin while retaining their own unique properties. Currently, a small number of 2D materials have been proved to be ferroelectric properties by experiments and have shown great application potential in nanoscale electrical and optoelectronic devices, expected to become the leaders of next-generation computing. In this review, the current 2D ferroelectric materials are summarized and discussed in detail from seven aspects: theoretical prediction, fabrication methods, ferroelectric characterization methods, principles of typical 2D ferroelectrics, optimization methods of ferroelectric performance, application, and challenges. Finally, the development of 2D ferroelectric materials looks into the future.
Funder
National Key R&D Plan "Nano Frontier" Key Special Project
Science and Technology Project of Hebei Education Department
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献