Unexpected advantages of exploitation for target searches in complex networks

Author:

Bae Youngkyoung1ORCID,Son Gangmin1ORCID,Jeong Hawoong12ORCID

Affiliation:

1. Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea

2. Center for Complex Systems, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea

Abstract

Exploitation universally emerges in various decision-making contexts, e.g., animals foraging, web surfing, the evolution of scientists’ research topics, and our daily lives. Despite its ubiquity, exploitation, which refers to the behavior of revisiting previous experiences, has often been considered to delay the search process of finding a target. In this paper, we investigate how exploitation affects search performance by applying a non-Markovian random walk model, where a walker randomly revisits a previously visited node using long-term memory. We analytically study two broad forms of network structures, namely, (i) clique-like networks and (ii) lollipop-like networks and find that exploitation can significantly improve search performance in lollipop-like networks, whereas it hinders target search in clique-like networks. Moreover, we numerically verify that exploitation can reduce the time needed to fully explore the underlying networks using [Formula: see text] diverse real-world networks. Based on the analytic result, we define the lollipop-likeness of a network and observe a positive relationship between the advantage of exploitation and lollipop-likeness.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Universal cover-time distributions of random motion in bounded granular gases;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3