Predicting layered itinerant magnetic Fe3SiSe2 with spontaneous valley polarization

Author:

Qiao Lei123ORCID,Fang Le12ORCID,Lv Qingyun12ORCID,Xu Shaowen12ORCID,Jia Fanhao12ORCID,Wu Wei12ORCID,Picozzi Silvia3ORCID,Pyatakov Alexander P.45ORCID,Reimers Jeffrey R.16ORCID,Ren Wei12ORCID

Affiliation:

1. Physics Department, International Center of Quantum and Molecular Structures, Materials Genome Institute, State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University 1 , Shanghai 200444, China

2. Zhejiang Laboratory 2 , Hangzhou 311100, China

3. Consiglio Nazionale delle Ricerche (CNR-SPIN), Unità di Ricerca presso Terzi c/o Università “G. D’Annunzio,” 3 Chieti 66100, Italy

4. Oscillation Department, Physical Faculty, Lomonosov Moscow State University 4 , Moscow 119991, Russia

5. MIREA—Russian Technological University 5 , Moscow, 119454, Russia

6. Department of Mathematical and Physical Sciences, University of Technology Sydney 6 , Ultimo, NSW 2007, Australia

Abstract

Density functional theory calculations are performed to systematically investigate the electronic and magnetic properties of few-layer and bulk Fe3SiSe2 (FSS). We predict that the bulk FSS has a metallic ground state and a layered structure displaying intralayer ferromagnetic ordering and interlayer antiferromagnetic ordering. The itinerant magnetism in the FSS was determined by the Stoner criterion. Predictions of the absence of unstable phonon modes and a moderate cleavage energy of only 28.3 meV/Å2 suggest the possibility of stabilizing FSS in a monolayer form. The calculated spin–orbit coupling facilitates not only a large magnetocrystalline anisotropy energy, around 500 μeV/Fe, but also spontaneous valley polarization in odd-numbered layer systems. These systems have net magnetic moments as the magnetic moments of AFM-ordered layers are not fully compensated in the odd-numbered layer case and are predicted to show 2D metallic behaviors. The magnitude of the valley polarization in odd-numbered layered systems decreases from 18 meV with layer number but is absent in even-layered structures, thus showing an odd–even oscillation effect. Experimental realization of this bidimensional metallic magnet is, therefore, expected to widen the arena of two-dimensional materials that show exotic phenomena.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3