CO2 inside sI clathrate-like cages: Automated construction of neural network/machine learned guest–host potential and quantum spectra computations

Author:

Valdés Álvaro1ORCID,Prosmiti Rita2ORCID

Affiliation:

1. Universidad Nacional de Colombia, Departamento de Física, Sede Medellín 1 , A.A. 3840, Medellín, Colombia

2. Institute of Fundamental Physics (IFF-CSIC), CSIC 2 , Serrano 123, 28006 Madrid, Spain

Abstract

We present new results on the underlying guest–host interactions and spectral characterization of a CO2 molecule confined in the cages of the sI clathrate hydrate. Such types of porous solids raise computational challenges, as they are of practical interest as gas storage/capture materials. Accordingly, we have directed our efforts toward addressing their modeling in a proper manner, ensuring the quality of the input data and the efficiency of the computational approaches. The computational procedure for spectral simulations, within the multi-configurational time-dependent Hartree framework, involves the development of a fully coupled Hamiltonian, including an exact kinetic energy operator and a many-body representation of the potential, along with dipole moment surfaces, both obtained through neural network machine learning techniques. The resulting models were automatically trained and tested on extensive datasets generated by PW86PBE-XDM calculations, following the outcome of previous benchmark studies. Our simulations enable us to explore various aspects of the quantized dynamics upon confinement of CO2@D/T, such as constrained rotational–translational quantum motions and the averaged position/orientation of the CO2 guest in comparison to the experimental data available. Particularly notable are the distinct energy patterns observed in the computed spectra for the confined CO2 in the D and T cages, with a considerably high rotational–translational coupling in the CO2@T case. Leveraging reliable computations has proved instrumental, highlighting the sensitivity of the spectral features to the shape and strength of the potential interactions, with the explicit description of many-body contributions being significant.

Funder

Ministerio de Ciencia e Innovación

Dirección de Investigación, Universidad Nacional de Colombia

European Cooperation in Science and Technology

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3