Influence of angle of attack on the semi-sealed cylindrical shell during high-speed water entry

Author:

Xia ShengshengORCID,Wei YingjieORCID,Wang CongORCID

Abstract

The fluid–structure interaction based on STAR-CCM+ and ABAQUS collaborative simulation is adopted in this paper, which is combined with the overset mesh technology, and the cavity evolution and motion characteristics of the semi-sealed cylindrical shell with the angle of attack during high-speed water entry are studied. The results show that the shell with an angle of attack experiences significant deflection after penetrating into the water, which is due to the fluid hitting the upper wall of the shell and generating a large torque. The deformation of the horizontally placed shell is much more obvious than that of a vertically placed shell during water entry. Due to the deformation of the shell, the direction of the fluid's force can be changed, resulting in a horizontal component force, causing a horizontal movement of the horizontal shell during water entry. As the angle of attack decreases, the volume of fluid entering into the shell gradually decreases, resulting in a decrease in the volume of fluid flowing out of the shell. The shell with an angle of attack less than 75° causes the top wall to come into contact with the water surface during the deflection process, which also generates new cavities below.

Funder

National Natural Science Foundation of China

Science and Technology on Underwater Information and Control Laboratory

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3