The force density in electrical machines modeled as tension and pressure gradients of magnetic field lines

Author:

Mörée G.1ORCID,Leijon M.1ORCID

Affiliation:

1. Division of Electricity, Uppsala University , Uppsala, Sweden

Abstract

This paper shows how to model the force density in electrical machines based on the field lines of the magnetic flux density. The force density is written as two vector components: the magnetic tension force and the magnetic pressure gradient force. This approach has been applied in physics but never to forces in engineering problems. The magnetic tension force acts to straighten bent field lines, based on the curvature of the flux density. The magnetic pressure gradient force acts from regions of high flux density to regions of low flux density. Both force densities are derived from the Lorentz force using the tnb-frame of Frenet–Serret formulas and shown to be equivalent to the divergence of the Maxwell stress tensor. It is shown how the force density could describe the forces in a synchronous machine, including both the angular torque of the load and the radial forces between the rotor and the stator. It could also be linked to the power flow and thereby to the energy flux of Poynting’s vector. The force densities could be used to improve the understanding of the Maxwell stress tensor, since they are easier to illustrate as vectors compared to the matrix form of the Maxwell stress tensor. It also shows the location of the force density, which could improve the use of enclosing volumes when calculating the force based on the divergence theorem with the Maxwell stress tensor.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3