Interplay between photoinduced charge and energy transfer in manganese doped perovskite quantum dots

Author:

Panigrahi Aradhana1ORCID,Mishra Leepsa1ORCID,Dubey Priyanka1ORCID,Dutta Soumi1ORCID,Mondal Sankalan1ORCID,Sarangi Manas Kumar1ORCID

Affiliation:

1. Department of Physics, Indian Institute of Technology , Patna 801106, India

Abstract

A comprehensive study on the photo-excited relaxation dynamics in semiconducting perovskite quantum dots (PQDs) is pivotal in realizing their extensive potential for optoelectronics applications. Among different competing photoinduced relaxation kinetics, energy transfer and charge transfer (CT) in PQDs need special attention, as they often influence the device efficacy, particularly with the donor–acceptor hybrid architecture. In this work, we explore a detailed investigation into photoinduced CT dynamics in mixed halide undoped CsPb(Br/Cl)3 and Mn2+ doped CsPb(Br/Cl)3 PQDs with a quinone molecule, p-benzoquinone (BQ). The energy level alignment of undoped PQDs with BQ allows an efficient CT, whereas Mn2+ doping reduces the CT efficiency, experiencing a competition between energy transfer from host to dopant and CT to BQ. The conductive atomic force microscopy measurements unveil a direct correlation with the spectroscopic studies by showing a significant improvement in the conductance of undoped PQDs in the presence of BQ, while an inappreciable change is observed for doped PQDs. A much-reduced transition voltage and barrier height in the presence of BQ further validate faster CT for undoped PQD than the doped one. Furthermore, Mn2+ doping in PQDs is observed to enhance their stability, showing better air and thermal stability compared to their undoped counterparts. These results reveal that doping strategy can regulate the CT dynamics in these PQDs and increase their stability, which will be beneficial for the development of desired optoelectronic devices with long-term stability.

Funder

Science and Engineering Research Board

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3