An alternative excitation method for electrical impedance tomography

Author:

Cui Ziqiang1ORCID,Yang Pengyu1,Li Xuan2ORCID,Wang Huaxiang1

Affiliation:

1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China

2. Department of Mathematics, Tianjin University of Finance and Economics Pearl River College, Tianjin 301811, China

Abstract

Electrical impedance tomography (EIT) can be utilized to image the conductivity distribution of material under test. The EIT measurements depend on the quality in the current injection and voltage measuring circuits. The current source plays a vital role in the EIT instruments. In most of the research studies, the push–pull current sources were employed for the source and sink signal generation. It usually requires frequent calibration to achieve proper functioning, especially for the sweeping frequency measurements. In this paper, an alternative excitation method has been proposed for simplifying the design of the current source in EIT instruments, which aims to achieve the performance of the push–pull current source by using a single-ended current source. It could offer the following advantages: (1) hardware simplification and (2) reduced requirements on current source calibration. The corrected measurements could be consistent with that using push–pull excitation, as confirmed by the numerical simulations. In addition, the reconstructed images have also been investigated to illustrate the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pulp-froth Interface Detection by Using ERT Linear Sensor;2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3