Liquid state theory study of the phase behavior and macromolecular scale structure of model biomolecular condensates

Author:

Shi Guang1ORCID,Schweizer Kenneth S.1234ORCID

Affiliation:

1. Department of Materials Science, University of Illinois 1 , Urbana, Illinois 61801, USA

2. Materials Research Laboratory, University of Illinois 2 , Urbana, Illinois 61801, USA

3. Department of Chemical and Biomolecular Engineering, University of Illinois 3 , Urbana, Illinois 61801, USA

4. Department of Chemistry, University of Illinois 4 , Urbana, Illinois 61801, USA

Abstract

Biomolecular condensates can form through the liquid–liquid phase separation (LLPS) of proteins and RNAs in cells. However, other states of organization, including mesostructured network microstructures and physical gels, have been observed, the physical mechanism of which are not well understood. We use the Polymer Reference Interaction Site Model liquid state integral equation theory to study the equilibrium behavior of (generally aperiodic in sequence) biomolecular condensates based on a minimal sticker–spacer associating polymer model. The role of polymer packing fraction, sequence, and the strength and range of intermolecular interactions on macromolecular scale spatial organization and phase behavior is studied for typical sticker–spacer sequences. In addition to the prediction of conventional LLPS, a sequence-dependent strongly fluctuating polymeric microemulsion homogeneous state is predicted at high enough concentrations beyond the so-called Lifshitz-like point, which we suggest can be relevant to the dense phase of microstructured biomolecular condensates. New connections between local clustering and the formation of mesoscopic microdomains, the influence of attraction range, compressibility, and the role of spatial correlations across scales, are established. Our results are also germane to understanding the polymer physics of dense solutions of nonperiodic and unique sequence synthetic copolymers and provide a foundation to create new theories for how polymer diffusion and viscosity are modified in globally isotropic and homogeneous dense polymeric microemulsions.

Funder

Grainger College of Engineering, University of Illinois at Urbana-Champaign

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3