A non-intrusive reduced order model using deep learning for realistic wind data generation for small unmanned aerial systems in urban spaces

Author:

Vuppala Rohit K. S. S.1ORCID,Kara Kursat1ORCID

Affiliation:

1. School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA

Abstract

Realistic wind data are essential in developing, testing, and ensuring the safety of unmanned aerial systems in operation. Alternatives to Dryden and von Kármán turbulence models are required, aimed explicitly at urban air spaces to generate turbulent wind data. We present a novel method to generate realistic wind data for the safe operation of small unmanned aerial vehicles in urban spaces. We propose a non-intrusive reduced order modeling approach to replicate realistic wind data and predict wind fields. The method uses a well-established large-eddy simulation model, the parallelized large eddy simulation model, to generate high-fidelity data. To create a reduced-order model, we utilize proper orthogonal decomposition to extract modes from the three-dimensional space and use specialized recurrent neural networks and long-term short memory for stepping in time. This paper combines the traditional approach of using computational fluid dynamic simulations to generate wind data with deep learning and reduced-order modeling techniques to devise a methodology for a non-intrusive data-based model for wind field prediction. A simplistic model of an isolated urban subspace with a single building setup in neutral atmospheric conditions is considered a test case for the demonstration of the method.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference49 articles.

1. The use of UAV and geographic information systems for facility location in a post-disaster scenario

2. T. H. Grubesic and J. R. Nelson, UAVs and Urban Spatial Analysis (Springer, 2020), pp. 13–29.

3. C. D. León, Drone delivery? amazon moves closer with f.a.a. approval, 2020 (https://www.nytimes.com/2020/08/31/business/amazon-drone-delivery.html).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3