Excitation wavelength-dependent photoluminescence decay of single quantum dots near plasmonic gold nanoparticles

Author:

Sun Yonglei1ORCID,Wang Yongchen2ORCID,Zhu Hua3ORCID,Jin Na3,Mohammad Adnan4,Biyikli Necmi14ORCID,Chen Ou3ORCID,Chen Kun5ORCID,Zhao Jing12ORCID

Affiliation:

1. Institute of Materials Science, University of Connecticut, Storrs Mansfield, Connecticut 06269, USA

2. Department of Chemistry, University of Connecticut, Storrs Mansfield, Connecticut 06269, USA

3. Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA

4. Department of Electrical and Computer Engineering, University of Connecticut, Storrs Mansfield, Connecticut 06269, USA

5. Department of Statistics, University of Connecticut, Storrs Mansfield, Connecticut 06269, USA

Abstract

Changing the excitation wavelength is a simple but effective strategy to modulate the photophysical cha racteristics of colloidal quantum dots (QDs) near plasmonic nanostructures. It has been observed that the photoluminescence (PL) decay of QDs near plasmonic nanostructures differs when the excitation wavelength is varied, but the exact mechanism is still unclear today. Here, we studied the excitation wavelength dependence of the PL decay of CdSe/CdS core/shell QDs near plasmonic gold nanoparticles at the single QD level. With the aid of statistical science, we demonstrated that the PL decay of a single QD near gold nanoparticles is generally faster when the QD is excited spectrally close to the localized surface plasmon resonance of gold nanoparticles. This excitation wavelength dependence is mainly caused by the varied proportion of photons coming from biexciton emission, which is the result of different local electric field enhancement by gold nanoparticles upon excitation.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3