Abstract
This paper aims at presenting a general-purpose-oriented and fully parallelized meshless framework to simulate complex Fluid–Structure Interaction (FSI) problems in ocean engineering. In this framework, a Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) solver is combined with several advanced pre- and post-processing techniques. Based on the framework, we have been developing our in-house WCSPH-FSI package named SPHydro for solving hydrodynamic problems involving complex FSI processes in an accurate, efficient, and convenient manner. Three benchmarks are performed to qualitatively and quantitatively validate the accuracy and convergence of SPHydro. In addition, several practical applications are also provided to further highlight the generality and applicability of SPHydro in ocean engineering simulations. It is demonstrated that SPHydro holds satisfactory performance in solving complex FSI problems in ocean engineering and that the present framework can be further developed to tackle more complex FSI problems for general engineering applications due to its high flexibility and extensibility.
Funder
National Key Research and Development Program of China
Guangzhou Basic and Applied Basic Research Project
National Natural Science Foundation of China
National Natural Science Foundation of Guangdong Province of China
Project supported by Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献