Durable Ni3N porous nanosheets array for non-noble metal methanol oxidation reaction

Author:

Zhang Wanying1,Rafiq Madiha1ORCID,Lu Jingcheng1ORCID,Woldu Abebe Reda1,Zhou Jianhong1,Xia Hong12,Chu Paul K.3ORCID,Hu Liangsheng12ORCID,Lu Fushen12

Affiliation:

1. Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University 1 , Shantou, Guangdong 515063, People’s Republic of China

2. Chemistry and Chemical Engineering Guangdong Laboratory 2 , Shantou 515063, People’s Republic of China

3. Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong 3 , Tat Chee Avenue, Kowloon, Hong Kong, China

Abstract

Direct methanol fuel cells (DMFCs) are energy carriers with a significant high energy density, easy implementation, a low operating temperature, and a convenient methanol fuel storage, rendering them a reasonable alternative for portable applications. However, there are several substantial barriers to the widespread use of DMFCs that must be addressed. Noble metal-based catalysts have long been regarded as outstanding electrocatalysts for fuel cells, but their high cost and low durability have kept them from becoming widely used. Nickel-based electrocatalysts are possible replacements for expensive noble metal catalysts owing to their low price, high durability, and remarkable surface oxidation properties. Herein, we develop an incredibly active and remarkably stable electrocatalyst for the methanol oxidation reaction (MOR) via a simple hydrothermal method coupled with nitridation to prepare highly porous Ni3N nanosheets arrays supported by nickel foam (NF) substrate.  The in situ growth of highly porous nanosheets on NF (NSAs/NF) exposes more active sites and allows fast charge/mass transfer, creating synergistic effects between Ni3N and NF. As a result, the strong interaction between Ni3N and NF prevents leaching and renders the catalyst highly stable for over 20 h with a 72.58% retention rate, making it among the best retention rates reported recently for comparable Ni-based catalysts. Based on these findings, nickel nitride appears to be an excellent electrocatalyst for fuel cell applications.

Funder

2022 Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province

City University of Hong Kong

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3