Phase distribution in nanochannels of supercritical fluid with different fluid–wall interactions

Author:

Abstract

Supercritical fluids (SFs) are classically regarded as single-phase fluids without bubbles or interfaces, but a recent study shows nanobubbles in SFs under unconfined conditions. The objective of this paper is to explore the phase distribution under confined conditions. Molecular dynamics simulations are performed for supercritical argon. Two walls containing the SF have equal fluid–wall interactions with equal and unequal wall temperatures. An external force is applied on the top wall to control the pressure at 1.5Pc, in which Pc is the critical pressure. Periodic boundary conditions are applied on the four side surfaces of the simulation box. The study indicates that the bulk fluid density is not only dependent on pressure and temperature, but also on fluid–wall interactions, this result deviates from the classical theory, where density depends on only pressure and temperature. For strong fluid–wall interactions, three- or five-layer structures are found, including liquid-like (LL) layers on the walls and two-phase-like (TPL) and gas-like (GL) layers (depending on bulk density) in the channel core. For weak fluid–wall interactions, the phase distribution becomes GL on the wall, and TPL and LL (depending on bulk density) in the channel core, which is inverse to those of strong fluid–wall interactions. Correspondingly, the phase distributions for strong and weak fluid–wall interactions can be analogous to annular or Leidenfrost patterns at subcritical pressures, respectively. The density profile is symmetric against the channel centerline at equal wall temperatures, but symmetry-breaking may exist when applying different wall temperatures. This work provides a phase-distribution link between subcritical and supercritical pressures, which is useful for the design and analysis of SF systems.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3