Large-eddy simulation of magnetohydrodynamics and heat transfer in annular pipe liquid metal flow

Author:

Fico Francesco1ORCID,Langella Ivan2ORCID,Xia HaoORCID

Affiliation:

1. Aeronautical and Automotive Engineering, Loughborough University 1 , Loughborough, United Kingdom

2. Aerospace Engineering, Flight Performance and Propulsion, TU Delft 2 , Delft, The Netherlands

Abstract

Turbulent structures in a concentric annular pipe within a uniform transverse magnetic field are examined for a liquid metal flow. Large-eddy simulations are performed to study the effect of magnetic field on turbulence suppression and heat transfer within this geometry. At the characteristic Prandtl number of liquid metals, the smallest scales based on temperature fluctuations are much larger than those of the velocity, which allows to resolve all the temperature scales with sufficient accuracy. The calculations are run at Reynolds number 8900 for three different Hartmann numbers, Ha=40,60,120. The comparison with available direct numerical simulation data shows encouraging agreement. The main findings of this work show a circumferential dependency of the flow characteristics on the local orientation of the magnetic field, with increased anisotropy observed at all Hartmann numbers studied. Anisotropic effects of the magnetic field are predominant for Ha = 60 and Ha = 120 causing turbulence to deviate from its conventional state. At these Hartmann numbers, a partial redistribution of the turbulent kinetic energy from the axial and radial components to the azimuthal component is observed. This effect, observed here for the first time, appears to be related to the appearance of coexisting quasi two-dimensional (2D) and three-dimensional (3D) turbulence states. Moreover, large skin friction increments are also observed at Ha = 60 and Ha = 120, while coherent structures stretching and streak suppression are found for all three Hartmann numbers.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3