Investigation of the possibility of generation of runaway electrons in subnanosecond gas discharges of high and ultrahigh pressure in the vicinity of microprotrusions on the cathode surface

Author:

Ivanov Stepan N.1ORCID,Lisenkov Vasily V.1ORCID

Affiliation:

1. Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences , 106 Amundsena St., Ekaterinburg 620016, Russia

Abstract

In the pressure range of 1–40 atm, experimental and theoretical studies of the processes of initiation and development dynamics of the initial stage of the self-sustained subnanosecond discharge in nitrogen, developing in a uniform electric field with the participation of runaway electrons, were carried out. Data on the maximum achievable values of the electric field strength in the discharge gap at the pre-breakdown stage of the discharge development and photographs of the microrelief of the surface of a stainless steel cathode formed during its training by subnanosecond high-voltage pulses were obtained. These data served as the basis for numerical 3D modeling of the development of an electron avalanche initiated by a field emission electron in a small region of enhanced electric field near a microinhomogeneity on the cathode. The possibility of transition of electrons in these avalanches to the runaway regime was studied. Cone-shaped microprotrusions, metal drops, and boundaries between pores and microcraters were considered as microinhomogeneities. It has been shown that the initial energy obtained by an electron near the microinhomogeneity can significantly facilitate its transfer into the runaway regime. This effect is especially noticeable at gas pressures higher 10 atm. As a result, at the stage of a self-sustained subnanosecond discharge formation, the runaway mode of an electron can be realized at the average reduced electric field strengths in the discharge gap, which are significantly lower than required by the runaway criterion.

Funder

Russian Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3