Information flow and allosteric communication in proteins

Author:

Hacisuleyman Aysima1ORCID,Erman Burak2ORCID

Affiliation:

1. Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland

2. Chemical and Biological Engineering, Koc University, Istanbul, Turkey

Abstract

Based on Schreiber’s work on transfer entropy, a molecular theory of nonlinear information transfer between residue pairs in proteins is developed. The joint distribution function for residue fluctuations required by the theory is expressed in terms of tensor Hermite polynomials that conveniently separate harmonic and nonlinear contributions to information transfer. The harmonic part of information transfer is expressed as the difference between time dependent and independent mutual information. Third order nonlinearities are discussed in detail. The amount and speed of information transfer between residues, which are important for understanding allosteric activity in proteins, are discussed. Mutual information between two residues is commonly used for information transfer. While mutual information shows the maximum amount of information that may be transferred between two residues, it does not explain the actual amount of transfer nor the transfer rate of information. For this, dynamic equations of the system are needed. The solution of the Langevin equation and molecular dynamics trajectories are used in the present work for this purpose. Allosteric communication in human NAD-dependent isocitrate dehydrogenase is studied as an example. Calculations show that several paths contribute collectively to information transfer. Important residues on these paths are identified. Time resolved information transfer between these residues, their amplitudes, and transfer rates, which are in agreement with time resolved ultraviolet resonance Raman measurements in general, are estimated. Peak values of calculated information transfer, ∼0.01–0.04 bits, are about two orders of magnitude smaller than the information content of residues. They are comparable to mutual information values, however. Estimated transfer rates are in the order of 1–20 megabits per second, and sustained transfer during the activity time-span of proteins may be significant. Information transfer from third order contributions is one to two orders of magnitude smaller than the harmonic terms, showing that harmonic analysis is a good approximation to information transfer.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3