SrRuO3 under tensile strain: Thickness-dependent electronic and magnetic properties

Author:

Wakabayashi Yuki K.1ORCID,Kobayashi Masaki23ORCID,Seki Yuichi3,Yamagami Kohei4ORCID,Takeda Takahito3,Ohkochi Takuo45,Taniyasu Yoshitaka1,Krockenberger Yoshiharu1ORCID,Yamamoto Hideki1ORCID

Affiliation:

1. NTT Basic Research Laboratories, NTT Corporation 1 , Atsugi, Kanagawa 243-0198, Japan

2. Center for Spintronics Research Network, The University of Tokyo 2 , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

3. Department of Electrical Engineering and Information Systems, The University of Tokyo 3 , Bunkyo, Tokyo 113-8656, Japan

4. Japan Synchrotron Radiation Research Institute (JASRI) 4 , 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan

5. Laboratory of Advanced Science and Technology for Industry, University of Hyogo 5 , Kamigori, Hyogo 678-1205, Japan

Abstract

The burgeoning fields of spintronics and topological electronics require materials possessing a unique combination of properties: ferromagnetism, metallicity, and chemical stability. SrRuO3 (SRO) stands out as a compelling candidate due to its exceptional combination of these attributes. However, understanding its behavior under tensile strain, especially its thickness-dependent changes, remains elusive. This study employs machine-learning-assisted molecular beam epitaxy to investigate tensile-strained SRO films with thicknesses from 1 to 10 nm. This work complements the existing focus on compressive-strained SRO, opening a new avenue for exploring its hitherto concealed potential. Using soft x-ray magnetic circular dichroism, we uncover an intriguing interplay between film thickness, electronic structure, and magnetic properties. Our key findings reveal an intensified localization of Ru 4d t2g-O 2p hybridized states at lower thicknesses, attributed to the weakened orbital hybridization. Furthermore, we find a progressive reduction of magnetic moments for both Ru and O ions as film thickness decreases. Notably, a non-ferromagnetic insulating state emerges at a critical thickness of 1 nm, marking a pivotal transition from the metallic ferromagnetic phase. These insights emphasize the importance of considering thickness-dependent properties when tailoring SRO for next-generation spintronic and topological electronic devices.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3