Exchange interaction between localized magnetic moments and conduction-electrons in Er doped gold nanoparticles synthesized by laser ablation in water

Author:

Fabris F.1ORCID,García-Flores A. F.1,Urbano R. R.1,Rettori C.1

Affiliation:

1. Instituto de Física “Gleb Wataghin,” UNICAMP, 13083-859 Campinas, São Paulo, Brazil

Abstract

In this work, we report a fundamental study on the exchange interaction between localized rare earth magnetic moments and conduction electrons of Er3+ diluted in Au metallic nanoparticles (NPs) produced by laser ablation in liquid. The study was carried out in Au1−xErx (x ≤ 0.026) bulk metallic alloys and NPs with a mean size of 20 nm. The samples were characterized by means of x-ray diffraction, transmission electron microscopy, magnetic susceptibility, and electron spin resonance (ESR) experiments. The obtained results showed that, despite the high temperature and being far away from chemical equilibrium throughout the laser ablation process, in the AuNPs, the Er3+ ( J = 15/2) ground state of the crystal electric field split multiplet remains a Γ7 ( g = 6.79) Kramers doublet with the expected g-shift and T-dependence of the ESR linewidth, preserving the general bulk properties and the cubic symmetry. In addition, the Au1−xErx NPs present narrow ESR residual linewidth suggesting homogeneous Er3+ doping and negligible strain distribution in the Au1−xErx NPs. This new methodology may certainly provide relevant insight into the study of the intrinsic physical properties of dilute rare earth metallic alloys at the nanometer scale seeking quantum size effects and motivates novel technological applications.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3