Accurate equation of state of rhenium as pressure scale up to 130 GPa and 3200 K

Author:

Xian Yunting1,Xiang Shikai1ORCID,Liu Lei1ORCID,Chen Junxiang1,Luo Yin1ORCID

Affiliation:

1. National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China

Abstract

The equations of states (EOSs) of inert metals are generally used as pressure scales in a high-pressure experiment. However, the thermodynamic model and the method used to constrain the parameters of the EOSs of these metals may cause pressure deviations of up to 7% at 100 GPa and room temperature, and even higher at higher pressures and higher temperatures. In this study, we provide a new approach for obtaining accurate EOS of inert metals. First, we use a set of thermodynamic models, within the quasi-Debye framework, to describe the thermodynamics. Second, both the volume vs pressure data from the shock compression experiment and the volume vs sound velocity data from the static compression experiment are used to constrain the parameters in the EOS formula. In the fitting process, a weighted least-square method based on the uncertainty of these data is used. The calculated Grüneisen parameter shows a strong dependence not only on volume but also on temperature. The variation of the Grüneisen parameter of Re can increase by up to 7% per 103 K under the same volume, which means the previous temperature-independent approximation of the Grüneisen parameter may cause an underestimate of the pressure at high temperature. The pressure–volume–temperature EOS of Re up to 140 GPa and 3200 K is established, which can be used as a high-pressure and high-temperature pressure gauge in the future.

Funder

National Key Research and Development Program of China

CAEP Foundation

National Natural Science Foundation of China

National Key Laboratory of Shockwave and Detonation Physics

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3