Asymmetric dual Bloch point domain walls in cylindrical magnetic nanowires

Author:

Askey J.1ORCID,Hunt M.1ORCID,Langbein W.1ORCID,Ladak S.1ORCID

Affiliation:

1. School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, United Kingdom

Abstract

Cylindrical magnetic nanowires have been studied extensively over the past ten years due to the presence of domain walls with novel topology and outstanding dynamic properties. In soft magnetic systems, where shape anisotropy forces the magnetization along the wire axis, and for radii above 50 nm, two topologically distinct walls have been previously identified. The Bloch point wall (BPW) has a circulating magnetization texture around the circumference and contains a single Bloch point within the center of the wire cross section. In contrast, asymmetric transverse walls (ATWs) have a circulating magnetization structure on the surface and contain two topological defects, a vortex and an anti-vortex on opposing sides. These surface defects are connected via a vortex tube that penetrates the volume. In this study, we have numerically investigated the domain wall magnetization textures for nickel nanowires of radii 50–120 nm. Beyond reproducing the known BPW and ATW topology, we discover a new domain wall type that contains aspects of both. This new domain wall type, which we call asymmetric dual Bloch point wall (ADBPW), has surface vortices similar to an ATW and two Bloch-point textures adjacent to the internal vortex tube. Time-resolved simulations investigating the stability of ADBPW show its field-driven transformation into a BPW via the ejection of a single Bloch point at the surface and subsequent annihilation of surface vortices.

Funder

Leverhulme Trust

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3