Comparison of enhancement techniques based on neural networks for attenuated voice signal captured by flexible vibration sensors on throats

Author:

Gao Shenghan1,Zheng Changyan2,Zhao Yicong1,Wu Ziyue1,Li Jiao1,Huang Xian1

Affiliation:

1. School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China

2. High-Tech Institute, Fan Gong-Ting South Street on the 12th, Qingzhou 262550, China

Abstract

Wearable flexible sensors attached on the neck have been developed to measure the vibration of vocal cords during speech. However, high-frequency attenuation caused by the frequency response of the flexible sensors and absorption of high-frequency sound by the skin are obstacles to the practical application of these sensors in speech capture based on bone conduction. In this paper, speech enhancement techniques for enhancing the intelligibility of sensor signals are developed and compared. Four kinds of speech enhancement algorithms based on a fully connected neural network (FCNN), a long short-term memory (LSTM), a bidirectional long short-term memory (BLSTM), and a convolutional-recurrent neural network (CRNN) are adopted to enhance the sensor signals, and their performance after deployment on four kinds of edge and cloud platforms is also investigated. Experimental results show that the BLSTM performs best in improving speech quality, but is poorest with regard to hardware deployment. It improves short-time objective intelligibility (STOI) by 0.18 to nearly 0.80, which corresponds to a good intelligibility level, but it introduces latency as well as being a large model. The CRNN, which improves STOI to about 0.75, ranks second among the four neural networks. It is also the only model that is able to achieves real-time processing with all four hardware platforms, demonstrating its great potential for deployment on mobile platforms. To the best of our knowledge, this is one of the first trials to systematically and specifically develop processing techniques for bone-conduction speed signals captured by flexible sensors. The results demonstrate the possibility of realizing a wearable lightweight speech collection system based on flexible vibration sensors and real-time speech enhancement to compensate for high-frequency attenuation.

Publisher

AIP Publishing

Subject

Automotive Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3