Neumann’s principle based eigenvector approach for deriving non-vanishing tensor elements for nonlinear optics

Author:

Wu Zishan1ORCID,Xiong Wei123ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, UC San Diego, La Jolla, California 92093, USA

2. Materials Science and Engineering Program, UC San Diego, La Jolla, California 92093, USA

3. Department of Electrical and Computer Engineering, UC San Diego, La Jolla, California 92093, USA

Abstract

Physical properties are commonly represented by tensors, such as optical susceptibilities. The conventional approach of deriving non-vanishing tensor elements of symmetric systems relies on the intuitive consideration of positive/negative sign flipping after symmetry operations, which could be tedious and prone to miscalculation. Here, we present a matrix-based approach that gives a physical picture centered on Neumann’s principle. The principle states that symmetries in geometric systems are adopted by their physical properties. We mathematically apply the principle to the tensor expressions and show a procedure with clear physical intuition to derive non-vanishing tensor elements based on eigensystems. The validity of the approach is demonstrated by examples of commonly known second and third-order nonlinear susceptibilities of chiral/achiral surfaces, together with complicated scenarios involving symmetries such as D6 and O h symmetries. We then further applied this method to higher-rank tensors that are useful for 2D and high-order spectroscopy. We also extended our approach to derive nonlinear tensor elements with magnetization, which is critical for measuring spin polarization on surfaces for quantum information technologies. A Mathematica code based on this generalized approach is included that can be applied to any symmetry and higher order nonlinear processes.

Funder

National Institute of General Medical Sciences

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3