Growth of ultra-flat ultra-thin alkali antimonide photocathode films

Author:

Stam W. G.1ORCID,Gaowei M.2ORCID,Echeverria E. M.3ORCID,Evans-Lutterodt Kenneth2,Jordan-Sweet Jean24,Juffmann T.56ORCID,Karkare S.7ORCID,Maxson J.3,van der Molen S. J.1,Pennington C.3,Saha P.27ORCID,Smedley J.28ORCID,Tromp R. M.14ORCID

Affiliation:

1. Leiden Institute of Physics 1 , Niels Bohrweg 2, Leiden, The Netherlands

2. Brookhaven National Laboratory 2 , Upton, New York 11973-5000, USA

3. Cornell University Laboratory for Accelerator-Based Sciences and Education 3 , Ithaca, New York 14853, USA

4. IBM T. J. Watson Research Center 4 , Yorktown Heights, New.York 10598, USA

5. University of Vienna, Faculty of Physics, VCQ 5 , A-1090 Vienna, Austria

6. University of Vienna, Max Perutz Laboratories, Department of Structural and Computational Biology 6 , A-1030 Vienna, Austria

7. Arizona State University 7 , Tempe, Arizona 85287, USA

8. SLAC National Accelerator Laboratory 8 , Menlo Park, California 94025, USA

Abstract

Ultra-flat, ultra-thin alkali antimonide photocathodes with high crystallinity can exhibit high quantum efficiency and low mean transverse energy of outgoing electrons, which are essential requirements for a variety of applications for photocathode materials. Here, we investigate the growth of Cs3Sb on graphene-coated 4H–SiC (Gr/4H–SiC), 3C–SiC, and Si3N4 substrates. Sb is deposited using pulsed laser deposition, while Cs is deposited thermally and simultaneously. We demonstrate, employing x-ray analysis and quantum efficiency measurements, that this growth method yields atomically smooth Cs3Sb photocathodes with a high quantum efficiency (>10%), even in the ultra-thin limit (<30 nm). For the Si3N4 substrate, film growth is shown to be polycrystalline, while films grown on Gr/4H–SiC show a high degree of ordering with signs of epitaxy.

Funder

H2020 Future and Emerging Technologies

U.S. Department of Energy

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3