Characterization of stability of dynamic particle ensemble systems using topological data analysis

Author:

Sudhan Kumar Harihara1ORCID

Affiliation:

1. Department of Aerospace Engineering, Tohoku University , Sendai 980-8578, Japan

Abstract

Holes are ubiquitous structures in phase space, and their time evolution could indicate an instability in the dynamics of the system. However, the properties of these holes are difficult to study directly due to their theoretical complexity and lack of computational tools. This study proposes the use of persistent homology (PH), a technique from topological data analysis, as a computational tool for analyzing the properties of these phase-space holes, or more formally the H1 homology class according to PH. Initially, by using a toy data set, it is shown that the time evolution and the growth rate of a H1 class in phase space could be obtained by PH. For further validation, PH is applied to particle ensemble systems, such as the Hamiltonian flow and the two-stream instability (TSI). Both the stable case, where no H1 forms, and the unstable case, where H1 forms, were analyzed. It was shown that PH can distinguish between the stable and unstable cases purely from the phase-space time evolution plots. In unstable TSI, the PH also distinguished the transition of the H1 class from linear to non-linear growth. The growth rate, thus, obtained is in excellent agreement with the growth rate of the particle energy in the TSI system.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3