Harmonic models and molecular dynamics simulations of isomorph behavior of Lennard-Jones fluids: Excess entropy and high temperature limiting behavior

Author:

Heyes D. M.1ORCID,Dini D.1ORCID,Pieprzyk S.2ORCID,Brańka A. C.2ORCID

Affiliation:

1. Department of Mechanical Engineering, Imperial College London 1 , Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom

2. Institute of Molecular Physics, Polish Academy of Sciences 2 , M. Smoluchowskiego 17, 60-179 Poznań, Poland

Abstract

Henchman’s approximate harmonic model of liquids is extended to predict the thermodynamic behavior along lines of constant excess entropy (“isomorphs”) in the liquid and supercritical fluid regimes of the Lennard-Jones (LJ) potential phase diagram. Simple analytic expressions based on harmonic cell models of fluids are derived for the isomorph lines, one accurate version of which only requires as input parameters the average repulsive and attractive parts of the potential energy per particle at a single reference state point on the isomorph. The new harmonic cell routes for generating the isomorph lines are compared with those predicted by the literature molecular dynamics (MD) methods, the small step MD method giving typically the best agreement over a wide density and temperature range. Four routes to calculate the excess entropy in the MD simulations are compared, which includes employing Henchman’s formulation, Widom’s particle insertion method, thermodynamic integration, and parameterized LJ equations of state. The thermodynamic integration method proves to be the most computationally efficient. The excess entropy is resolved into contributions from the repulsive and attractive parts of the potential. The repulsive and attractive components of the potential energy, excess Helmholtz free energy, and excess entropy along a fluid isomorph are predicted to vary as ∼T−1/2 in the high temperature limit by an extension of classical inverse power potential perturbation theory statistical mechanics, trends that are confirmed by the MD simulations.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3