Advances in superconductor quantum and thermal detectors for analytical instruments

Author:

Ohkubo Masataka12ORCID

Affiliation:

1. National Institute of Advanced Industrial Science and Technology 1 , 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan

2. University of Tsukuba 2 Faculty of Pure and Applied Sciences, , 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan

Abstract

Analytical instruments or scientific instruments are indispensable for scientific research and industry. The analytical instruments require a detector that converts physical quantities to be measured (measurands) to electric signals. This Tutorial describes the basics of quantum and thermal detectors, the operation principles of superconductor detectors, and the ultimate performance of state-of-art analytical instruments with superconductivity. We still face fundamental issues, such as the classical Fano factor, the relation between energy gap and mean carrier creation energy, quasiparticle dynamics, and the intermediate state in the middle of superconducting transition; and engineering issues, such as the small sensitive area and the spatially nonuniform response. Nevertheless, enormous efforts have matured superconductor detectors, which enables us to solve the inherent problems of conventional analytical instruments. As an example of the analytical results, we describe x-ray spectroscopy and mass spectrometry at our institute by using three detector types: superconductor tunnel junction, transition edge sensor, and superconductor strip. Microwave kinetic inductance and metallic magnetic calorimetric types are also described. The analytical results may contribute to a wide range of fields, such as dentistry, molecular biology, energy-saving society, planetary science, and prebiotic organic molecules in space.

Funder

Acquisition, Technology & Logistics Agency

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3