Biasing crystallization in fused silica: An assessment of optimal metadynamics parameters

Author:

Lodesani Federica1ORCID,Menziani Maria Cristina1ORCID,Urata Shingo2ORCID,Pedone Alfonso1ORCID

Affiliation:

1. Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy

2. Planning Department, AGC, Inc., Yokohama, Kanagawa 230-0045, Japan

Abstract

Metadynamics (MetaD) is a useful technique to study rare events such as crystallization. It has been only recently applied to study nucleation and crystallization in glass-forming liquids such as silicates, but the optimal set of parameters to drive crystallization and obtain converged free energy surfaces is still unexplored. In this work, we systematically investigated the effects of the simulation conditions to efficiently study the thermodynamics and mechanism of crystallization in highly viscous systems. As a prototype system, we used fused silica, which easily crystallizes to β-cristobalite through MetaD simulations, owing to its simple microstructure. We investigated the influence of the height, width, and bias factor used to define the biasing Gaussian potential, as well as the effects of the temperature and system size on the results. Among these parameters, the bias factor and temperature seem to be most effective in sampling the free energy landscape of melt to crystal transition and reaching convergence more quickly. We also demonstrate that the temperature rescaling from T > Tm is a reliable approach to recover free energy surfaces below Tm, provided that the temperature gap is below 600 K and the configurational space has been properly sampled. Finally, albeit a complete crystallization is hard to achieve with large simulation boxes, these can be reliably and effectively exploited to study the first stages of nucleation.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3