Impact of moiré superlattice on atomic stress and thermal transport in van der Waals heterostructures

Author:

Ren Weijun12ORCID,Lu Shuang1ORCID,Yu Cuiqian1ORCID,He Jia1,Zhang Zhongwei1,Chen Jie1ORCID,Zhang Gang2ORCID

Affiliation:

1. Center for Phononics and Thermal Energy Science, China–EU Joint Lab for Nanophononics, MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University 1 , Shanghai 200092, People's Republic of China

2. Institute of High Performance Computing, A*STAR 2 , Singapore 138632

Abstract

Moiré superlattices and their interlayer interactions in van der Waals heterostructures have received surging attention for manipulating the properties of quantum materials. In this work, based on non-equilibrium molecular dynamics simulations, we find that the in-plane thermal conductivity of graphene/hexagonal boron nitride (h-BN) moiré superlattices decreases monotonically with the increase in the interlayer rotation angle within the small twisting range. The atomic stress amplitude exhibits the periodic distribution corresponding to a structural moiré pattern. Through the in-depth analysis at the atomic level, a competing mechanism between the magnitude and the directional change of the in-plane heat flow has been revealed, and the dominant role of directional change in determining the in-plane thermal conductivity of graphene/h-BN moiré superlattices at small rotation angle has also been confirmed. Finally, the monotonic decreasing trend of in-plane thermal conductivity at a small rotation angle is further explained by the reduced low-frequency phonon transmission and the blue shift of the transmission peak as the interlayer rotation angle increases. Our work provides the physical understanding of the moiré superlattice effect and a new approach for regulating the thermal conductivity of two-dimensional materials.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Fundamental Research Funds for the Central Universities

Agency for Science, Technology and Research

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3