Global existence and wave breaking for a stochastic two-component Camassa–Holm system

Author:

Chen Yajie1ORCID,Miao Yingting2ORCID,Shi Shijie3ORCID

Affiliation:

1. School of Science, Shandong Jianzhu University 1 , Jinan, People’s Republic of China

2. School of Mathematics, South China University of Technology 2 , Guangzhou 510641, People’s Republic of China

3. College of Big Data and Internet, Shenzhen Technology University 3 , Shenzhen 518118, People’s Republic of China

Abstract

In this paper, we study the stochastic two-component Camassa–Holm shallow water system on R and T≔R/2πZ. We first establish the existence, uniqueness, and blow-up criterion of the pathwise strong solution to the initial value problem with nonlinear noise. Then, we consider the impact of noise on preventing blow-up. In both nonlinear and linear noise cases, we establish global existence. In the nonlinear noise case, the global existence holds true with probability 1 if a Lyapunov-type condition is satisfied. In the linear noise case, we provide a lower bound for the probability that the solution exists globally. Furthermore, in the linear noise and the periodic case, we formulate a precise condition on initial data that leads to blow-up of strong solutions with a positive probability, and the lower bound for this probability is also estimated.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the stochastic Euler-Poincaré equations driven by pseudo-differential/multiplicative noise;Journal of Functional Analysis;2023-11

2. Wave-breaking and weak instability for the stochastic modified two-component Camassa–Holm equations;Zeitschrift für angewandte Mathematik und Physik;2023-07-11

3. Well-posedness for a stochastic Camassa–Holm type equation with higher order nonlinearities;Stochastics and Partial Differential Equations: Analysis and Computations;2023-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3