Analysis of a UV photocatalytic oxidation-based disinfection system for hydroxyl radicals, negative air ions generation and their impact on inactivation of pathogenic micro-organisms

Author:

Ahlawat Kiran1ORCID,Jangra Ramavtar1ORCID,Ish Ambar2ORCID,Dixit Ambesh1ORCID,Fulwani Deepak3,Jain Neha2,Prakash Ram1ORCID

Affiliation:

1. Department of Physics, Indian Institute of Technology Jodhpur 1 , Jodhpur 342030, Rajasthan, India

2. Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur 2 , Jodhpur 342030, Rajasthan, India

3. Department of Electrical Engineering, Indian Institute of Technology Jodhpur 3 , Jodhpur 342030, Rajasthan, India

Abstract

This work presents a large-scale surface disinfection system, which has a unique lantern arrangement of ultraviolet-C (UV-C) light (254 nm) in conjunction with nanotechnology in a protective biosafety environment. Shadow regions are best dealt in this system by the generation of hydroxyl radicals (•OH) and negative air ions at sites where UV light cannot penetrate. More than 35 000 negative air ions/cm3 along with •OH were produced continuously in the disinfection chamber through the advanced photocatalytic oxidation process [UV-C + titanium dioxide (TiO2)]. The arrangement has been made to provide an optimized UV irradiation (∼2 mW/cm2) throughout the disinfection system. In order to distinguish between effects arising from (i) the action of UV dose alone and (ii) the action of UV dose along with •OH and negative air ions, E. coli and P. aeruginosa were chosen for bacterial testing and two interventions were made. The first intervention involved placing only UV lamps in the disinfection chamber to see the effect of only UV dose on bacterial inactivation efficiency. The second intervention involved placing the TiO2 nanoparticle coated aluminum plates along with UV lamps; this allows for the generation of negative air ions and •OH inside the disinfection chamber and enhanced bacterial inactivation efficiency. More than 95% bacterial inactivation efficiency has been reported in the case of UV-C + TiO2 compared to only 77% in UV only at the same time interval (90 s).

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3