Individual ion species chemical potentials in the Mean Spherical Approximation

Author:

Høye Johan S.1,Gillespie Dirk2ORCID

Affiliation:

1. Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

2. Department of Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois 60612, USA

Abstract

The Mean Spherical Approximation (MSA) is a commonly used thermodynamic theory for computing the energetics of ions in the primitive model (i.e., charged hard-sphere ions in a background dielectric). For the excess chemical potential, however, the early MSA formulations (which were widely adopted) only included the terms needed to compute the mean excess chemical potential (or the mean activity coefficient). Other terms for the chemical potential μ i of individual species i were not included because they sum to 0 in the mean chemical potential. Here, we derive these terms to give a complete MSA formulation of the chemical potential. The result is a simple additive term for μ i that we show is a qualitative improvement over the previous MSA version. In addition, our derivation shows that the MSA’s assumption of global charge neutrality is not strictly necessary, so that the MSA is also valid for systems close to neutrality.

Funder

National Heart, Lung, and Blood Institute

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3