Perspective on solid-phase epitaxy as a method for searching novel topological phases in pyrochlore iridate thin films

Author:

Kim Woo Jin12ORCID,Song Jeongkeun34,Li Yangyang5,Noh Tae Won34ORCID

Affiliation:

1. SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025, USA

2. Department of Applied Physics, Stanford University, Stanford, California 94305, USA

3. Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Republic of Korea

4. Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea

5. School of Physics, Shandong University, Jinan 250100, China

Abstract

Pyrochlore iridates exhibit various novel topological phenomena due to their topology and electron correlation. Notably, pyrochlore iridate was the first proposed material system shown to host the time-reversal symmetry broken Weyl semimetal phase. After this profound theoretical proposal, extensive experimental attempts have been made to synthesize high-quality samples in both bulk and film forms. In particular, adjusting thin film geometry represents a practical way to tune the U/ t ( U: Coulomb interaction and t: for hopping parameter) and identify the various topological phases in the regime U ∼ λ ( λ: spin–orbit interaction). However, the instability of pyrochlore iridates at high temperature and low oxygen pressure has long been a barrier to growing pyrochlore iridate thin films by conventional film growth methods. To overcome this, pyrochlore iridate films have often been grown by the solid-phase epitaxy method, which uses a metastable amorphous layer grown at low temperature. During a high temperature post-annealing process, the layer in contact with a single crystalline substrate will crystallize epitaxially in the solid state by rearranging atoms at the interface. Here, we present a perspective on the solid-phase epitaxy as a method to synthesize epitaxial pyrochlore iridate thin films and a way to search for novel correlated phenomena.

Funder

Institute for Basic Science

U.S. Department of Energy

Gordon and Betty Moore Foundation

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3