Carbide-derived carbon by room temperature chemical etching of MAX phase for supercapacitor application

Author:

Varghese Sophy Mariam12ORCID,Sarath Kumar S. R.3ORCID,Rakhi R. B.12ORCID

Affiliation:

1. Centre for Sustainable Energy Technologies (C-SET), CSIR-National Institute of Interdisciplinary Science and Technology (CSIR-NIIST) 1 , Thiruvananthapuram, Kerala 695019, India

2. Academy of Scientific and Innovative Research (AcSIR) 2 , Ghaziabad 201002, India

3. Department of Nanoscience and Nanotechnology, University of Kerala 3 , Kariavattom, Thiruvananthapuram 695581, India

Abstract

Porous carbons have attracted substantial interest within the realm of energy storage applications. However, their traditional production methods often involve the use of elevated temperatures. In this study, we introduce a simple technique to transform titanium silicon carbide (Ti3SiC2) MAX phases into porous carbons, known as carbide-derived carbons (CDCs), at room temperature by selective etching of the metal atoms (Ti and Si). We investigate how temperature affects the activation of CDCs so formed with potassium hydroxide to enhance their electrochemical properties. Our results unveil the remarkable potential of CDCs activated at 700 °C, demonstrating superior electrochemical performance with a specific capacitance of 198 F g−1 at a scan rate of 20 mV s−1 in a three-electrode configuration. The symmetric supercapacitor based on CDC-700 maintains a respectable specific capacitance of 98 F g−1 at 1 A g−1 and an energy density of 13.7 Wh kg−1 at a power density of 1 kW kg−1. This cost-effective approach offers a pathway for large-scale CDC production, with excellent specific supercapacitor characteristics, promising advancements in energy storage technology.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3