A multiscale symbolic approach to decoding delta and ripple oscillation bands as biomarkers for epileptiform discharges

Author:

Granado Mauro1ORCID,Collavini Santiago23ORCID,Martinez Nataniel4ORCID,Miceli Federico1,Rosso Osvaldo A.15ORCID,Montani Fernando1ORCID

Affiliation:

1. Instituto de Física de La Plata (IFLP), Universidad Nacional de La Plata, CONICET CCT-La Plata 1 , Diagonal 113 entre 63 y 64, La Plata 1900, Buenos Aires, Argentina

2. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos (EnyS), Hosp. “El Cruce-N. Kirchner,” Universidad Nacional Arturo Jauretche, CONICET CCT-La Plata 2 , Av. Calchaquí 5401, Florencio Varela 1888, Buenos Aires, Argentina

3. Instituto de Ingeniería y Agronomía, Universidad Nacional Arturo Jauretche, CONICET CCT-La Plata 3 , Av. Calchaquí 6200, Florencio Varela 1888, Buenos Aires, Argentina

4. Instituto de Investigaciones Físicas De Mar De Plata (IFIMAR), CONICET-UNMdP 4 , Rodríguez Pe na 3903-3999, Mar del Plata 7602, Provincia de Buenos Aires, Argentina

5. Instituto de Física, Universidade Federal de Alagoas (UFAL) 5 , BR 104 Norte km 97, 57072-970 Maceió, Brazil

Abstract

We use a multiscale symbolic approach to study the complex dynamics of temporal lobe refractory epilepsy employing high-resolution intracranial electroencephalogram (iEEG). We consider the basal and preictal phases and meticulously analyze the dynamics across frequency bands, focusing on high-frequency oscillations up to 240 Hz. Our results reveal significant periodicities and critical time scales within neural dynamics across frequency bands. By bandpass filtering neural signals into delta, theta, alpha, beta, gamma, and ripple high-frequency bands (HFO), each associated with specific neural processes, we examine the distinct nonlinear dynamics. Our method introduces a reliable approach to pinpoint intrinsic time lag scales τ within frequency bands of the basal and preictal signals, which are crucial for the study of refractory epilepsy. Using metrics such as permutation entropy (H), Fisher information (F), and complexity (C), we explore nonlinear patterns within iEEG signals. We reveal the intrinsic τmax that maximize complexity within each frequency band, unveiling the nonlinear subtle patterns of the temporal structures within the basal and preictal signal. Examining the H×F and C×F values allows us to identify differences in the delta band and a band between 200 and 220 Hz (HFO 6) when comparing basal and preictal signals. Differences in Fisher information in the delta and HFO 6 bands before seizures highlight their role in capturing important system dynamics. This offers new perspectives on the intricate relationship between delta oscillations and HFO waves in patients with focal epilepsy, highlighting the importance of these patterns and their potential as biomarkers.

Funder

Consejo Nacional de Investigaciones Científicas y Técnicas

Facultad de Ciencias Exactas, Universidad Nacional de La Plata

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3