Experimental study on permeability evolution of sandstone under cyclic loading

Author:

Wang Meng,Zhang Chunyu,Liu Rentai,Bai JiwenORCID,Chen BingORCID,Sui Jiancai,Sun XiangORCID

Abstract

The permeability of a rock mass affects the site selection and construction of underground high-pressure gas storage for compressed-air energy storage. This study investigates the permeability evolution of sandstone under high-pressure gas during the cycle of confining and axial pressures. Nitrogen permeation tests were conducted at different inlet pressures using the steady-state method. The initial steady-state flow, seepage in the circulation, and steady-state flow after circulation were measured continuously in three stages. The effects of the loading and unloading rates and load-holding time on the seepage flow were analyzed. The results indicate that the flow rate and displacement changed with periodic changes in the axial and confining pressures during the cycle. The higher the inlet pressure, the greater was the difference between the peak and trough of the flow in the cycle, and the greater was the difference between the flow after the cycle and the initial flow. When the inlet pressure was 10 MPa, the steady-state flow rate increased from 284 ml/min to 336 ml/min (18%). When the inlet pressure was 2 MPa, the evolution range of the seepage flow in the sample was similar for different load-holding times. The loading and unloading rates had a significant influence on the flow waveform in the circulation process but little influence on the wave height. With an increase in the number of cycles, the porosity of the samples first decreased rapidly and then increased slowly. This study provides a reference for construction and operation of compressed-air energy-storage systems.

Funder

National Key Research and Development Program of China

postdoctoral fellowship program of CPSE

the major key technical research projects of shandong energy group

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3