Distinct impacts of polar and nematic self-propulsion on active unjamming

Author:

Venkatesh Varun1ORCID,Mondal Chandana2ORCID,Doostmohammadi Amin1ORCID

Affiliation:

1. Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark

2. UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017, India

Abstract

Though jamming transitions are long studied in condensed matter physics and granular systems, much less is known about active jamming (or unjamming), which commonly takes place in living materials. In this paper, we explore, by molecular dynamic simulations, the jamming–unjamming transition in a dense system of active semiflexible filaments. In particular, we characterize the distinct impact of polar vs nematic driving for different filament rigidities and at varying densities. Our results show that high densities of dynamic active filaments can be achieved by only changing the nature of the active force, nematic or polar. Interestingly, while polar driving is more effective at unjamming the system at high densities below confluency, we find that at even higher densities, nematic driving enhances unjamming compared to its polar counterpart. The effect of varying the rigidity of filaments is also significantly different in the two cases: While for nematic driving, lowering the bending rigidity unjams the system, we find an intriguing reentrant jamming–unjamming–jamming transition for polar driving as the filament rigidity is lowered. While the first transition (unjamming) is driven by softening due to reduced rigidity, the second transition (jamming) is a cooperative effect of ordering and coincides with the emergence of nematic order in the system. Together, through a generic model of self-propelled flexible filaments, our results demonstrate how tuning the nature of self-propulsion and flexibility can be employed by active materials to achieve high densities without getting jammed.

Funder

Novo Nordisk Fonden

Villum Fonden

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3