Polarization mechanism in filled tungsten bronze Ba4Sm2Ti4Nb6O30 with pinched PE hysteresis loops

Author:

Song Jia Wen1ORCID,Wang Ying1,Wu Shu Ya1,Zhu Xiao Li1ORCID,Chen Xiang Ming1ORCID

Affiliation:

1. School of Materials Science and Engineering, Zhejiang University , Hangzhou 310027, China

Abstract

Ferroelectric transition and polarization characteristics were explored for filled tungsten bronze Ba4Sm2Ti4Nb6O30 ceramics with pinched P–E hysteresis loops. Two dielectric permittivity peaks were observed at around 553 and 486 K on heating and cooling cycles, respectively, with a large thermal hysteresis (∼77 K), indicating the first-order ferroelectric phase transition behavior in the present ceramics. In addition, a low-temperature dielectric relaxation appeared at around 300 K, following the Vogel–Fulcher relationship, which is related to thermal activation related to the polarization in the ab plane. Pinched P–E hysteresis loops were detected in the temperature range of 293–453 K with two pairs of coercive fields, indicating certain polar reversal mechanism, while E1 corresponds to the reversal field needed for all the ferroelectric domains in the system, and E2 is the back switch field from the polar state to the nonpolar state. Therefore, (E1–E2)/2 is the effect coercive field for the polar domain induced by the field transition. Temperature dependence of the coercive fields E1, E2, and (E1–E2)/2 is fitted to the Vopsaroiu model with different activated energies obtained for different temperature ranges, based on which the polarization dynamics of the pinched hysteresis loops are discussed.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3