Dual-cluster interpretation of Au–Sn binary eutectics and solders

Author:

Ma Yupeng1,Wang Fei1,Li Zhuang2ORCID,Liu Hang1,Tang Ran1,Yin Huicong1,Zhang Junxi1,Yang Sihan1,Dong Dandan1ORCID

Affiliation:

1. College of Physical Science and Technology, Dalian University 1 , Dalian 116622, China

2. Key Laboratory for Materials Modification by Laser, Ion and Electron Beam (Dalian University of Technology), Ministry of Education 2 , Dalian 116024, China

Abstract

Au–Sn alloy is an important high-temperature solder, but it has some disadvantages such as high cost and brittleness. Multicomponent alloying is often performed to improve performance and reduce their cost. However, due to the absence of an atomic structure model, there has been a lack of effective theory to guide their composition design. Since Au–Sn solders are typically eutectic-based, understanding the Au–Sn eutectic at the atomic level is of great significance for clarifying the composition origin of Au–Sn solders and the subsequent multi-component composition design. In the present work, the short-range order of Au–Sn eutectics is characterized using a dual-cluster model. In the dual-cluster formulism, the two eutectics Au69.6Sn30.3 and Sn94.6Au5.4 at. % are interpreted in terms of the hypoeutectic [SnAu12]Sn2Au3 + [Au–Au2Sn6]Au3 = Au70.0Sn30.0 and [Au–Sn8]Au1 + 2{[Sn–Sn10]Sn5} = Sn95.2Au4.8 alloys, respectively. The compositions of Au–Sn solders are then analyzed based on the interpreted dual-cluster formulas, which indicate that the number of atoms of the alloying elements that replace the atoms in the dual-cluster formulas is always an integer. The present method provides a quantitative approach toward developing a practical composition interpretation and design tool for Au–Sn-based solders.

Funder

Dalian Youth Science and Technology Project

National Undergraduate Training Programs for Innovation and Entrepreneurship

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3