The effect of small perturbation on dynamics of absorptive LiBr–water solution

Author:

Arroiabe P. F.1ORCID,Martinez-Agirre M.1ORCID,Nepomnyashchy A.2ORCID,Bou-Ali M. M.1ORCID,Shevtsova V.13ORCID

Affiliation:

1. Fluid Mechanics Group, Faculty of Engineering, Mondragon University 1 , 20500 Mondragon, Spain

2. Department of Mathematics, Technion–Israel Institute of Technology 2 , 32000 Haifa, Israel

3. IKERBASQUE, Basque Foundation for Science 3 , Plaza Euskadi 5, 48009 Bilbao, Spain

Abstract

In a binary solution of lithium bromide–water, even a small disturbance in the initial homogeneous mass fraction at the absorbing interface has profound effects on the entire system dynamics. This perturbation of absorption disrupts the equilibrium, leading to the formation of surface tension gradients and subsequently, Marangoni flows. While these flows are relatively weak, they result in a non-uniform distribution of density within the bulk, initiating buoyant convection. We investigate complexities of the Marangoni, solutal, and buoyant convection caused by localized disruptions in uniform absorption, all in the absence of any surfactants. We have conducted numerical simulations to explore fluid dynamics and heat and mass transfer, revealing three different regimes. Initially, shortly after disturbance, variations in mass fraction and flow within the cell are primarily governed by the Marangoni force. After a finite period, the emergence of buoyant convection leads to the strong growth of velocity and significant changes in temperature and mass fraction. Finally, the destabilization of the boundary layer becomes so significant that the emission of plumes is observed. At later times, the parallel existence of two types of patterns takes on a spatially fixed form. The central part, occupied by bands (visible on space-time maps), exhibits minimal changes in time, while a periodic structure is established near the wall. This behavior can be characterized as a relaxation–oscillation mode of instability.

Funder

The Basque government

The Basque government

The Spanish government

The European Regional Development Fund (ERDF) “A way of making Europe”

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3