Strain hardening and toughening in metal/molecular nanolayer/metal nanosandwiches

Author:

Sangiovanni Davide G.1ORCID,Rowe Collin2ORCID,Sharma Geetu2ORCID,Lane Michael3ORCID,Eklund Per1ORCID,Ramanath Ganpati12ORCID

Affiliation:

1. Department of Physics, Chemistry, and Biology, Linköping University 1 , Linköping SE-58183, Sweden

2. Department of Materials Science & Engineering, Rensselaer Polytechnic Institute 2 , Troy, New York 12180, USA

3. Chemistry Department, Emory and Henry College 3 , Emory, Virginia 24327, USA

Abstract

Introducing molecular nanolayers (MNLs) is attractive for enhancing the stability of, and inducing unusual properties at, inorganic thin film interfaces. Although organic molecules anchored to inorganic surfaces have been studied extensively, property enhancement mechanisms underpinned by molecular assemblies at inorganic thin film interfaces are yet to be revealed and understood. Here, ab initio molecular dynamics simulations of tensile strain of Au/MNL/Au thin film nanosandwich models provide insights into molecularly induced strain hardening and toughening. Au/MNL/Au nanosandwiches support up to ≈30% higher stresses and exhibit up to ≈140% higher toughness than pure Au slab models. Both hardening and toughening are governed by molecular length and terminal chemistry in the MNL. Strong Au/MNL interface bonding and greater molecular length promote defect creation in Au, which results in strain hardening. Accommodation of increasing post-hardening strains in the MNL mitigates the stress increase in the Au slabs, delays interface fracture, and contributes to toughening. Remarkably, toughening correlates with equilibrium interface strain, which could be used as a proxy for efficiently identifying promising inorganic/MNL combinations that provide toughening. Our findings are important for the discovery and design of inorganic–organic interfaces, nanomaterials, and composites.

Funder

National Science Foundation

VINNOVA

Swedish Research Council

Knut and Alice Wallenberg Foundation, Sweden

National Academic Infrastructure for Supercomputing in Sweden

Swedish National Infrastructure for Computing

Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3