Affiliation:
1. Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
2. Xiangyang Industrial Institute of Hubei University of Technology, Xiangyang 441100, China
3. Institute of Economics and Technology, State Grid Huanggang Power Supply Company, Huanggang 438000, China
Abstract
Due to its excellent insulation properties and environmental characteristics, C6F12O gas mixture shows a wide range of applications prospects in low and medium voltage gas insulated equipment. The thermal decomposition characteristics of gas insulating medium are of great importance for the industrial application of gases and the operation and maintenance of equipment. In this paper, the type and concentration of the main products of the thermal decomposition of C6F12O/O2/CO2 gas mixture are researched experimentally with different O2 mixing ratios, and the effective gas production rate is analyzed. The mechanism of thermal decomposition of C6F12O/O2/CO2 gas mixture is studied based on ReaxFF molecular dynamics. The experimental results show that the main thermal decomposition products are CF4, C2F6, C3F6, C3F8, C4F10, C5F12, and C6F14. The addition of O2 promotes the thermal decomposition of the C6F12O/O2/CO2 gas mixture. Theoretical studies show that the C6F12O in the mixture undergoes the multistage decomposition reaction. The main particles of all levels of decomposition are C3F7COCF2, CF3, CF3CFC(O) (CF2), CF2CO, C3F7, C3F7C(O) (CF2), CFC(O) (CF2), FCCO, F, CF3CFCF2, CO, and CF2. The results of the research can provide some reference for the engineering application and maintenance of C6F12O gas mixture insulated equipment.
Funder
National Natural Science Foundation of China
The Hubei Provincial Natural Science Foundation Innovation Group
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献