Inhibition of vibrational energy flow within an aromatic scaffold via heavy atom effect

Author:

Hassani Majid1ORCID,Mallon Christopher J.1,Monzy Judith N.2ORCID,Schmitz Andrew J.1,Brewer Scott H.2ORCID,Fenlon Edward E.2ORCID,Tucker Matthew J.1ORCID

Affiliation:

1. Department of Chemistry, University of Nevada 1 , Reno, Nevada 89557, USA

2. Department of Chemistry, Franklin & Marshall College 2 , Lancaster, Pennsylvania 17604-3003, USA

Abstract

The regulation of intramolecular vibrational energy redistribution (IVR) to influence energy flow within molecular scaffolds provides a way to steer fundamental processes of chemistry, such as chemical reactivity in proteins and design of molecular diodes. Using two-dimensional infrared (2D IR) spectroscopy, changes in the intensity of vibrational cross-peaks are often used to evaluate different energy transfer pathways present in small molecules. Previous 2D IR studies of para-azidobenzonitrile (PAB) demonstrated that several possible energy pathways from the N3 to the cyano-vibrational reporters were modulated by Fermi resonance, followed by energy relaxation into the solvent [Schmitz et al., J. Phys. Chem. A 123, 10571 (2019)]. In this work, the mechanisms of IVR were hindered via the introduction of a heavy atom, selenium, into the molecular scaffold. This effectively eliminated the energy transfer pathway and resulted in the dissipation of the energy into the bath and direct dipole–dipole coupling between the two vibrational reporters. Several structural variations of the aforementioned molecular scaffold were employed to assess how each interrupted the energy transfer pathways, and the evolution of 2D IR cross-peaks was measured to assess the changes in the energy flow. By eliminating the energy transfer pathways through isolation of specific vibrational transitions, through-space vibrational coupling between an azido (N3) and a selenocyanato (SeCN) probe is facilitated and observed for the first time. Thus, the rectification of this molecular circuitry is accomplished through the inhibition of energy flow using heavy atoms to suppress the anharmonic coupling and, instead, favor a vibrational coupling pathway.

Funder

National Science Foundation

National Institute of General Medical Sciences

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3